THE PROBLEM OF THE THIRTEEN SPHERES

In the Euclidean plane one can surround a unit circle by six other unit circles, all touching
the central one. It is easy to see that six is already the maximal number of touching neighbors
and moreover, such a configuration is unique (up to a rotation) and can be replicated to
the whole plane, giving an infinite packing of unit circles in which every circle touches six
neighbors. In the physical space, one can also ask the same kind of questions: how many unit
spheres can simultaneously touch a central unit sphere? and what are those infinite packings
of unit spheres such that in which every sphere touches the maximal touching neighbors?
We will discuss the issues of the second question in next chapter. For the first question,
twelve is clearly possible, as one can arrange those twelve neighbors touching the central
unit sphere at the vertices of an inscribing regular icosahedron:

Figure 1.1

Unlike the case of circle packings, this symmetric arrangement cannot be replicated to the
whole space. Moreover, it leaves a lot of space between the touching neighbors (as one can
see that all the twelve touching neighbors are free to roll a little bit on the central unit
sphere). It is natural to ask whether it is possible to rearrange them in a suitable way so
that the space created can allow us to place a thirteenth touching neighbor on top of it. This
is in fact a famous problem in classical solid geometry, namely, “the problem of the thirteen
spheres”:

“Is it possible to arrange thirteen unit spheres all touching a central unit sphere
simultaneously?”

Dated back to 1694 at the Christ Church in Oxford, there was a recorded discussion between
David Gregory and Isaac Newton on the above issue. Newton believed that twelve should
already be the maximal, but Gregory thought that thirteen might be possible. Their discus-
sion ended without a proof or an example. When this recorded discussion was discovered
later, it immediately became a famous problem in classical solid geometry, sometimes also
referred as the “Newton’s problem”.

The problem of the thirteen spheres turned out to be very challenging, and even after
almost two centuries of work, there were only some incorrect proofs such as [Ben], [Hop],
[Gun]. The answer was finally settled to the impossibility of thirteen touching spheres in



1953 by Schiitte and van der Waerden [SW-2], and later, in a two-page article by Leech in
1956 [Lee] where he sketched another proof of the impossibility. In 1993 Hsiang published
a proof of the famous Kepler Conjecture [Hsi-1], and in developing the techniques on the
estimations of total buckling heights, he gave another proof of “thirteen is impossible” as an
application of his area estimation techniques [Hsi-2].

In this chapter we are going to study the above three proofs in chronological order. In
retrospect, all the above three proofs rely on area estimates on certain kinds of graphs (or
configurations) on the sphere, and the fundamental reason for the non-existence of thirteen
touching neighbors is exactly that the total surface area of the unit sphere is not sufficient
to accommodate such a graph or configuration with thirteen vertices. In other words, the
(spherical) area of certain kinds of hypothetical configurations must exceed 4, thus impos-
sible to exist.

1 The proof by van der Waerden

In the paper [SW-2] there were, in fact, two proofs on the impossibility of thirteen
touching neighbors. The first, simpler proof was due to van der Waerden and the second,
similar but slightly more involved proof was due to Schiitte. Schiitte’s proof was included
there because firstly, it has the priority and secondly, they also believed that the method
involved should be applicable to the study of other problems of “spherical codes”, namely,
the arrangements of certain number of points on the unit sphere with maximal separation.
But in here we will only discuss the proof by van der Waerden.

Irreducible graphs on the minimal sphere

In their previous work [SW—1], Schiitte and van der Waerden had already developed a
system of tools to study the spherical code problems. They associated to each arrangement
of points on the unit sphere a graph, by joining those pairs of points with minimal Euclidean
separation (among pairwise of points) using straight line intervals, then normalized the length
of such intervals to be 1 by a suitable scaling. What they wanted to do was to use this graph
to decompose the scaled sphere into spherical equilateral polygons by radial projection, but
the graph obtained might consist of just a single edge only, so they introduced the following
concepts of “minimal sphere” and “irreducible graph”:

Definition: The minimal sphere of N points is the sphere with minimal radius r, on which
N points with the above Euclidean separation (> 1) can still be maintained.

Then they showed the existence of such a value r. In other words, one can assume that
the points are already arranged with maximal separation (which is 1 in Euclidean distance,
1

or @ = 2rsin~ % in spherical distance) on the corresponding minimal sphere of radius r.

Definition: By a procedure “push-away” (“Wegschieben”) we mean a movement of a point
P on the sphere in such a way that if the (Euclidean) separation between P and @ is “> 17 it
keeps the separation to be still “> 1” (but may change the value); if the separation between
P and @ is “=17, it increases the separation to be “> 1”.

Definition: A connected graph is called irreducible if it does not allow any “push-away”
movement.



Then they claimed that on the minimal sphere (of N > 6 points) the corresponding
induced graph could be decomposed into irreducible graphs, and possibly with some isolated
points. Moreover, an irreducible graph possess the following nice properties:

(a) All the angles in an irreducible graph are less than 7;

(b) If the radius of the minimal sphere is at most 1, then an irreducible graph will decom-
pose the sphere into triangles, quadrilaterals and pentagons only;

(c) For the case N > 6, no isolated point can lie in the interior of a triangle or a quadri-
lateral. For the case N > 12, no isolated point can lie in the interior of a pentagon.

Van der Waerden wanted to prove the impossibility of thirteen touching neighbors by
showing that corresponding minimal sphere must have radius r greater than 1. So he assumed
the contrary that » < 1, and therefore the induced graph would decompose the sphere into
equilateral spherical triangles, quadrilaterals and pentagons without isolated point. He tried
to obtain a contradiction based on the estimates on what he called the “angle-excesses” of
those polygons, which are in fact “area-excesses” by a scaling to unit sphere, and assuming
the side length a to be at least 3.

Total sum of angle-excesses of a configuration

Set « to be the inner angle of an equilateral spherical triangle, and § to be that of a
square (i.e. equilateral quadrilateral with four equal angles). Van der Waerden introduced
the following concept of “angle-excess” of a spherical equilateral polygon with n sides:

(1) w=o0—(n—2) 3«

where o is the sum of interior angles of the polygon. Note that by definition triangles have no
angle-excess. The total angle-excess is denoted by W, which is simply the sum of individual
angle-excesses w over all the faces:

2) W=Y0-Y(n—2)3a=N-2r— (2E — 2F) - 3a

where N, E and F' are respectively the number of points, edges and faces of the polygonal
decomposition of the sphere. By Euler formula, one can replace F — F by N — 2, so we have
the following total sum of angle-excesses:

. W =N-21—2(N—2) 3a
= 267 — 66« (for N = 13)

The main idea of his proof is to estimate the lower bound of angle-excesses for the individual
spherical polygons (resp. a certain collection of polygons) and then obtain a lower bound
estimate of the total sum of angle-excesses which turns out to be larger than the above value
of W, thus obtaining a contradiction that proves the impossibility.

Outline of the lower bound estimation of angle-excesses

Van der Waerden first claimed that the minimal angle-excess of a pentagon was achieved

by an isosceles “triangle” with side-lengths 2a and base-length a, where ¢ = 2rsin™" %



Hence the angle-excess ws of a pentagon is bounded below by the angle-excess () of a square,
namely

(4) ws > Q =45 — 6 > 41 — 10« (a+p>mforr<1)

Therefore in the hypothetical configuration there could exist at most one pentagon, or at
most one square, since 2Q) > W for r < 1.

Next van der Waerden introduced the terminologies of “large” and “small” angles in a
quadrilateral. Each quadrilateral in the configuration contained a larger pair of equal angles
{v,7} and a smaller pair of equal angles {x,z}. Hence, by definition, v and x should satisfy
the following bounds

(5) a<z<pB, B<y<2

The second claim of van der Waerden was the lower bound estimate on the partial sum of
angle-excesses wp counting only those quadrilaterals with a small angle at P. For the cases
without pentagons involved, he claimed that

(6) wp > Wy

where w, denoted the angle-excess of the quadrilateral with small angle 27 — 4. By an easy
elimination of the case of having all angles being large at a point P (cf. Case 3 near the end
of this section), he did the total accounting as follows:

Case 1: The configuration contains only triangles and non-square quadrilaterals.

Summing up all wp for the thirteen vertices, and since the angle-excess of each quadri-
lateral will be counted twice in the sum of LHS of (6), we have

(7) 2W =5 " pwp > 13wy

which is impossible by a simple numerical checking. For example, when r = 1, one has
a=cos ! %, 2W = 0.876174904 and 13wy = 1.0414911.

Case 2: The configuration contains one pentagon or one square.

Since the angle-excess of a pentagon ws (resp. a square Q) is at least
(4" ws > Q > 41 — 10«

This is already so big that even we count the angle-excesses of those quadrilaterals adjacent
to the pentagon (resp. square) only once, we still can obtain the following lower bound
estimate:

(8) 2W > 2wy + 8wp > 2ws + 8wy
(resp. > 2Q + wp > 2Q + Ywy)

which is again impossible, and this completes the proof by van der Waerden on the impos-
sibility of thirteen touching neighbors.

Remark: The lower bound estimate on ws can be justified by a lemma appeared in Schiitte’s
proof (Satz 5 in [SW-2]). However, in arriving at the estimate (6) : wp > wy, van der
Waerden relied on a sequence of deformations in which he only explained how to perform the
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deformations but did not provide justifications to guarantee the decrement of the partial sum
of angle-excesses wp, or the deformations could be performed in a consistent way globally.

A reformulation of van der Waerden’s estimation on angle-excesses in a simpler,
more clean-cut way

First of all, by a constant scaling, we can simply replace the lower bound estimate on
angle-excesses by the lower bound estimate of area-excesses. Then the “Satz 5” of Schiitte’s
proof is in fact a special case of the following lemma:

Lemma 1.1 (c¢f. Lemma 2.1.2 of [Hsi-2|): A quadrilateral with four given side-lengths
attains its mazimal area when it is cocircular. Shearing deformation (i.e. deformation by
varying the length of a chosen diagonal with the four side-lengths fized) further away from
cocircularity is monotonic area-decreasing.

Verification on the lower bound estimate of ws:

Given a pentagon ABC'DFE, we choose four of the vertices to form a quadrilateral, say
ABCD. Then we can select a suitable shearing direction so that the deformation is further
away from cocircularity:

B~ o
C 7 c’
A A
D D
E E

Figure 1.2

Since for r < 1, a + 8 > 7 and therefore this area-decreasing shearing deformation can
be performed as long as the interior angle at B’ is still less than 7 (see condition (a) for
irreducible graphs). The same deformation can also be applied to quadrilateral AC'DE. As
a result, the area of a pentagon will be bounded below by the isosceles triangle as specified
(by pushing to the limiting case). O

Next, to prove the estimate (6) : wp > wy, we can apply a simple corollary of the
following classical result in spherical geometry:

Lemma 1.2 (Lexell’s Theorem): Let AABC and AABC' be two triangles with the same
base AB and same oriented area. Then C, C', A* and B* are cocircular, where A* and B*
are the antipodal points of A and B.

Corollary: For a cluster of isosceles triangles with the same side lengths sharing a common
top vertex P with a fixed sum of central angles, the more lopsided is the distribution of the
central angles, the smaller is the total area.



Figure 1.3
Proof: As indicated in Figure 1.3, the Lexell circle which collects points A} so that
area( AAy A4 AL) = area(AAyA4A3) is shown. Obviously, the more balanced is the distri-

bution of 5, f5, the bigger is the area of AA;A4R and hence the total area of the isosceles
triangles. ([l

Verification on the lower bound estimate of (6) : wp > wy:

Recall the definition that wp counts the area-excesses of only those quadrilaterals with
small angles at P. As 6a > 2w, and irreducible graph has no 2-fork vertex, we need only to
consider the following three cases:

Case 1: P is a 5-fork vertez.

In this case, we cannot have a large angle at P since 4a + 8 > 27w. As long as the
total area-excess is concerned, we may rearrange the positions of the polygons so that all
the quadrilaterals are placed together. By cutting each quadrilateral into two congruent
isosceles triangles using the diagonal joining its two large angles, we obtain a cluster of
isosceles triangles at point P.

Figure 1.4

Now, by the above Corollary, we obtain a lower bound of the total area of the cluster, hence
a lower bound of the total area-excess wp, which is the one with central angle distribution
being the most lopsided possible, namely («, a, o, a, 2r —4«). The corresponding area-excess
is exactly wy.

Case 2: P is a 4-fork vertex.

It is impossible to have three large angles at P. If there are two large angles at P, then
since a + 3 > m, we must have r = 1 and central angle distribution (a, a, 3, #), which is
impossible because of the existence of two squares. If there is only one large angle v at P,



then since v < 2a;, so the sum of remaining three angles must be larger than 27 — 2. Hence
the total area-excess of the remaining three triangles/quadrilaterals (i.e. wp) must be larger
than the one with central angle distribution (o, a, 2 — 4a), which is again wy.

If there is no large angle at P, the lower bound estimate of wp becomes trivial because
the most lopsided distribution will include one 8 and @ > wy.

Case 3: P is a 3-fork vertez.

If there is a small angle x, then = > 27 — 4« (because the sum of the other two angles
is less than 4«), hence wp > wy. If all the three angles are large angles (i.e. wp = 0), then
the total area-excess of these three quadrilaterals is at least larger than that of the triple
quadrilaterals with central angle distribution (2¢, 3, 3), which is impossible.

Hence the estimate (6) : wp > wy is also justified. O

Remark: In fact, the above case division also appeared in Schiitte’s proof. But in there he
was discussing other issues.

In retrospect, the key idea of van der Waerden’s proof is the existence of an irreducible
graph. It provides a decomposition of the sphere into polygons which are all equilateral.
This facilitates the lower bound estimation of the area-excesses of those polygons, from
which a contradiction of the assumption of thirteen touching neighbors arises. However, the
construction, or the proof of the existence, of an irreducible graph is rather sophisicated and
it is highly non-trivial to pin down in a clean-cut way.

2 The proof by Leech

Next let us discuss the proof by Leech on the impossibility of thirteen touching neighbors.
In his short article of 1956 [Lee], Leech outlined his idea of the proof which did not require
a sophisicated construction of irreducible graph with equal lengths as van der Waerden did.
Instead, by a carefully chosen upper bound of cosfl% on edge lengths, he simply joined
those pairs of vertices with separation less than the chosen bound and applied the area
estimation techniques and combinatorial (or topological) analysis to show the non-existence
of such hypothetical configurations. However, the part on area estimation and combinatorial
analysis became more involved than in van der Waerden’s case. In his own words, Leech

wrote, “certain details which are tedious rather than difficult being omitted’.

An outline of Leech’s proof

Leech started with a given number of points on the unit sphere with % (spherical) sep-
aration. As mentioned before, he joined those pair of vertices with separation strictly less
than cos™! % by a great circle arc. He pointed out that, with brief explanations, the graph
obtained will satisfy the following two properties:

(a) Edges will not cross over each other, and by a deformation if necessary, one can assume
that the graph will subdivide the unit sphere into polygons;

(b) The graph contains no vertex with degree more than five. It is because the inner angles
of a polygon are always bigger than %, as all of them should be bounded below by the

base angle of a Z-isosceles triangle with base length cos ! %, which is exactly 3.



The next key step in Leech’s approach was the following claims on the area estimates of the
polygons obtained:

T_

s-equilateral triangle, whose

(i) the area of a triangle is at least equal to the area of a

area is equal to Ax = 3cos™! s — 7 =0.55128..;

(ii) the area of a quadrilateral is at least equal to the area of a Z-equilateral quadrilateral
with one diagonal length being cos™ " =, whose area 1s equal to 2(cos™ " (—z )+ 37 —7) =
ith di 11 h bei ! ; h i lto 2 ! ; g
1.334... =2 A=z +0.231.. ;

(iii) the area of a pentagon is at least equal to the area of a Z-equilateral pentagon with two
non-crossing diagonals of lengths both equal to cos™* =, whose area is about 2.226 =
3 A% +0.572.

and so on. In his short article, Leech simply stated the above area estimates without proofs.
Then he applied the Euler formula, firstly to obtain an upper bound on the number of
vertices V:

(9) 2V —4)-A: <47 = V<13
3

and secondly, similar to the argument of van der Waerden’s proof, to obtain the following
area-excess estimate in the case of V' =13:

(10) 4m — 22A5 = 0.438... > 0.231F, + 0.572(F5 +...)

where F, denotes the number of n-gons in the hypothetical configuration with thirteen
vertices. From the above estimate on area-excesses he concluded that if thirteen touching
neighbors were possible, then F5; = Fs = ... =0 and F, =0 or 1. He could easily eliminate
the possibility of F; = 0 because those 33 edges sharing among 13 vertices must create a
vertex with degree at least six. For the case of F; = 1, Leech claimed that it is again not
possible to have such a combinatorial type, but he wrote (in his own words), “I know of no
better proof of this than sheer trial’. And then he only outlined the idea of his “sheer trial’
in a few lines following this claim.

Remark: In 1998, Aigner and Ziegler in their book [AZ] tried to provide a detailed proof of
the impossiblity of thirteen touching neighbors using Leech’s approach, especially they sup-
plied a systematic argument to replace Leech’s “sheer trial’. However, detailed justifications
on the area estimates were still missing from their proof.

Justifications of Leech’s claims on area estimates

In fact, by direct applications of Lemma 1.1 (cf. Lemma 2.1.2 of [Hsi-2]), namely, shearing
deformation further away from cocircularity is always monotonic area-decreasing, one can
justify Leech’s claims on area estimates in a straightforward, clean-cut way. Now we proceed
to verify the three claims on area estimates as follows:

Area estimate of a triangle: Let {{, (5, (3} be the side lengths of a given triangle. We can
piece another copy of the triangle along an edge, say the one with length /5, to produce a
quadrilateral. Note that a cocircular quadrilateral with side lengths {¢y, {5, (1, (5} will have
its diagonal lengths both equal to cos™ (cos €y 4 cos by — 1) (cf. Eq (75) on p.45 of [Hsi-2]),
which is at least 7 as % < cosly,cosly < % Hence, shearing deformation by shortening /3
is area-decreasing. The shearing deformation can be performed until it is blocked by the %




lower bound on edge lengths. Repeat the same procedure for the other two edges, one can
easily see that the minimal area should be attained by a Z-equilateral triangle.

Area estimate of a quadrilateral: Again we perform area-decreasing shearing deformation on
a given quadrilateral until the length of the shortening diagonal hitting its lower bound of
cos™! % (beyond that the quadrilateral will be decomposed into two triangles by definition).

Similarly, a triangle with base length cos™ % and side length bounds of £ < ¢ < cos™ £ will

attain its minimal area when it is Z-isosceles, whose area is equal to (cos *(—1) + 2 —7) =

2 tan™! ? (cf. area formula of triangle, Lemma 2.1.1 of [Hsi-2]) and hence the area of a
quadrilateral is bounded below by the double of it.

Area estimate of a pentagon: We choose four out of the five vertices to form a quadrilateral

and perform area-decreasing shearing deformation on it until the length of the shortening

diagonal hitting the lower bound of cos ! % The area of the triangle with base length cos™* %

is bounded below by 2 tan~! ? For the adjacent quadrilateral, we again perform the area-

decreasing shearing deformation until the length of another diagonal hitting the lower bound

of cos™* 1. Again the triangle with base length cos™' 1 is bounded below by 2 tan™* @, and
11

the area of the cos™ =-isosceles triangle is bounded below by the one with base length %,

whose area is 2tan~! Y142
when it is Z-equilateral with two non-crossing diagonals of lengths both equal to cos

. . —1 /143 ~1V3\ ~
The area of this pentagon is exactly (2tan™! Yo + 4 tan ! =) & 2.226.

. Therefore the area of a pentagon will attain its minimal value
-11
5

A simple argument on the non-existence of combinatorial type with F; = 20 and

In the following we provide a simple argument to show the non-existence of a combinato-
rial type with thirteen vertices, in which there are only triangles and exactly one quadrilateral,
and all the vertices are of degrees at most five. By Euler formula, there should be 32 edges
and hence except one of them is a 4-fork vertex, all the remaining twelve are 5-fork vertices.
We divide our discussion into two main cases according to whether the only 4-fork vertex
belongs to the quadrilateral or not.

Case 1: The 4-fork vertex belongs to the quadrilateral.

In this case, the partial configuration around the quadrilateral must be the one as shown
in Figure 1.5(a), and we need to add two points P, @) in the complement of the partial
configuration as shown in Figure 1.5(b):

Figure 1.5

The numbers shown in Figure 1.5(b) are the degrees from the partial configuration in Fig-
ure 1.5(a). We need to add enough non-crossing edges to complete the configuration. Since



there is no more quadrilateral in the configuration, we must join P and (). As all the nine
vertices in Figure 1.5(b) should be of degree five, we need to fill in edges so as to add 10
degrees to the boundary vertices and 8 degrees to the vertices P and (). Therefore, we must
join two boundary vertices by an edge, and with the restriction that this edge cannot block
any boundary vertex from joining to P or (). Clearly it is impossible to do so.

Case 2: The 4-fork vertex does not belong to the quadrilateral.

In this case, the partial configuration around the quadrilateral must be the one as shown in
Figure 1.6(a), and we need to add one point P in the complement of the partial configuration
as shown in Figure 1.6(b):

Figure 1.6

The partial configuration in Figure 1.6(a) contains 24 edges, so we need to add 8 edges in
the complement of the configuration in Figure 1.6(b). As the degree of P is at most five, at
least three of the edges are joining boundary vertices. It is straightforward to check that one
can draw at most two edges in total starting at vertices with labels “4” so we must have an
edge joining two vertices with labels “3”.

If two nearby vertices with labels “3” are joined by an edge (as shown by the dotted
line in Figure 1.6(b)), then there is a 4-fork boundary vertex. Hence deg P = 5 and we
need to add two more edges joining boundary vertices. Now it is straightforward to check
that joining any two boundary vertices will either create an extra 3-fork or 4-fork vertex, or
blocking too many vertices from joining to P (we need to join five vertices to P). Hence this
case is impossible.

If two opposite vertices with labels “3” are joined by an edge (as shown by the dashed line
in Figure 1.6(b)), then we consider the vertex with label “3” at the half of the complementary
configuration without containing P. It is easy to see that adding one edge to it (make it
become the only 4-fork vertex) will create another 4-fork vertex, and adding two edges to it
will create two other 4-fork vertices. Thus this case is again impossible.

This completes the proof of the non-existence of combinatorial type with F3; = 20 and
Fy =1, in which every vertex is of degree at most five. OJ

In retrospect, Leech’s approach is quite simple. Starting with a much less restrictive
graph than those irreducible graphs used in [SW-2| and using some simple lower bound
area estimates on triangles (resp. quadrilaterals, pentagons), namely, 0.5513 (resp. 1.334,
2.226), the proof of impossibility of thirteen touching neighbors can be directly reduced to
the non-existence of such a configuration with Fy = 20 and F; = 1, which in fact, can simply
be proved as above.
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3 The proof by Hsiang

The proof by Hsiang was in fact given as a demonstration example (cf. p.72 in [Hsi-2])
of his area estimation techniques developed specifically for the estimations of total buckling
heights in his proof of Kepler Conjecture [Hsi-1]. For a given set of finite number of points
Y on the unit sphere, he simply used a natural way to create a configuration by taking the
Euclidean convex hull 7(X) of the points, and then radially projecting the edges and faces of
I(X) onto the unit sphere. The configuration obtained is called the spherical configuration
associated to X, denoted by S(¥).

Remark: Sometimes S(X) is also referred as the standard configuration. It is also the same
as the Delaunay decomposition.

The spherical configuration S(X), by definition, satisfies the following two nice properties,
which are both referred as the convezity property of S(X):
(a) All the spherical polygons obtained are cocircular;

(b) The interior of the circumcircle of any spherical polygon contains no points of X.

In application, we may also assume the following extra condition of a-saturacy:

Definition: A finite set of points X on the unit sphere is said to be a-saturated if the adding
of any other point to ¥ will change the separation from at least equal to a to less than a.

Then, Hsiang proved the following lemmas on area estimates:

Lemma 1.3 (cf. Lemma 2.2.1 in [Hsi-2]): If ¥ is an a-saturated set with at least four points,
then all faces in S(X) are either triangles, quadrilaterals or pentagons, and the area of any
face is at least equal to the area of the cocircular spherical polygon with the same number of
sides of lengths equal to a.

Let §'(X) denote a configuration obtained by adding non-crossing diagonals to subdivide
any non-triangular face of S(X), if any, into triangles. Then

Lemma 1.4 (cf. Lemma 2.2.2 in [Hsi-2]): The area of a 6A-star in a S'(X) of a 5-saturated
set of points is at least equal to 2COS_1(—%) =6 Ax +0.51355. ...

Lemma 1.5 (cf. Remark on p.81 of [Hsi-2]): The area of a TA-star in a S'(X) of a %-
saturated set of points is at least equal to 7 Az +0.770329 .. ..

The area estimates above are very strong because simply the area-excess of a 6/A-star
itself is already larger than the total area-excess 471 — 22A§. Therefore, the Hsiang’s proof
of the impossibility of thirteen touching neighbors was just the following few lines:

Suppose for contrary that it is possible to place thirteen points on the unit sphere with 2-
separation. We may assume that the set of points is already Z-saturated. By Euler formula,
one has a triangulated spherical configuration with 22 triangles and 33 edges. Therefore, at
least one of its thirteen vertices has more than five edges and hence the total area is at least
equal to

1
-1
(11) 16 A=z +2cos (—5) > 4

which is obviously a contradiction.
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The key result used in Hsiang’s approach is Lemma 1.4, and the proof of Lemma 1.4
(cf. 8§2.2.4 in [Hsi-2]) relies on a collection of one-parameter families of area-decreasing
deformations (like the one in Lemma 1.1) which can be effectively applied to any 6A-star
and reduces the lower bound area estimate to straightforward comparison of several critical
cases where all geometric data can be explicitly computed. The area estimation techniques
applied in the previous two sections follow exactly this line of thinking.

4 A comparative analysis on the three proofs of the
impossibility of thirteen touching neighbors

Qualitatively speaking, the above three proofs all involve following three steps, namely,
construction of a configuration, lower bound area (excess) estimations and combinatorial
analysis.

(a) In van der Waerden’s proof, the construction of an irreducible graph is rather com-
plicated which requires some non-trivial deformations. But since all the edges are of
equal length, the area estimates become quite simple and the combinatorial analysis is
also simple.

(b) In Leech’s proof, the construction of a configuration is quite simple, namely, just joins

those within the chosen bound of cos™! % The upper bound of cos™' 1 is specifically

chosen to eliminate the possibility of a 6-fork vertex in a conﬁguratiZ)n, and in the
same time keeping a good lower bound area estimation. But, since the edge-length
distribution becomes non-uniform, the lower bound area estimation of the polygons
becomes slightly more involved and the combinatorial analysis of configuration is also

slightly more complicated.

(c) In Hsiang’s proof, the configuration is simply taken to be the natural one obtained from
the convex hull of the points. There hardly exists a good control on the edge-length
distribution, and so the lower bound area estimations are rather involved. However,
the built-in convexity property of the spherical configuration exerts quite restrictive
requirements on the partial configurations and hence a better area estimate can be
obtained, which reduces the needed combinatorial analysis to triviality.

Therefore, each of the above three proofs has its own technical advantages and disadvantages.
In order to obtain a more objective comparison on these three proofs, we try to employ their
methods of proofs to study a directly related problem, which is more challenging and still
remains open, namely, the spherical code problem of thirteen points.

Upper bound estimation on the maximal separation of thirteen points

The spherical code problem askes for the maximal separation one can obtained in arrang-
ing N points on the unit sphere. The impossibility of having thirteen touching neighbors
simply says that the maximal separation 0,3 is strictly less than %. By how much is d;3 less
than 27 We will try to employ the methods used in the above three proofs to obtain some

upper bound estimates of d,3. [Note: T = 1.04719...]

Using van der Waerden’s method:

In fact, van der Waerden’s proof was published as a follow-up article after his joint work
with Schiitte on spherical codes [SW-1]. Therefore, his method is already in the setting of
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the problem. The key estimate in his proof is the invalidity of the following area-excesses
estimate:
(7") 2W = (26m — 66a) > 13wp is invalid when a = %
By seeking the smallest edge-length a so that the above estimate still remains to be invalid,
we can obtain an upper bound on d;3. Note that

., cosa

Q = COS T+ cosa’
(12) + cos a

tan sin !(sin 2a si
wo:2'(27r—7oz+2(:os’1 ansin_(sin 2a sin a)

)

tana

and by direct numerical computations, we obtain a > 1.04318. Hence

(13) 013 < 1.04318

Using Leech’s method:

The key estimate in Leech’s proof is the deduction of F; < 1 from the following area-
excess estimate

(10) A — 227\, = 267 — 660 > (Ay — 20,) - Fy+ ...

where Ay is twice the area of an a-isosceles triangle with base angle equal to 3.
It is straightforward to compute that

. 71 . T .
_, tansin™ ' (sin § sin a) 2r

14 A, =4
( ) 4 €os tana 3

and in order to obtain Fy < 1, we need (A4 — 24\,) - 2 > 26m — 66c. Direct numerical
computations show that a > 1.04635 and hence

(15) 013 < 1.04635

Using Hsiang’s method:

Using the idea of Hsiang’s proof, the minimal area of a 6A-star will be the one with

two a-equilateral triangles, one a-square and two a-isosceles triangles with base angles both

cosa — 1
equal tom—a — g, where 3 = cos™* osatl Therefore, in order to obtain a contradiction,
cosa

we need to ensure that the area-excess of such a minimal 6/A\-star, namely,

tansin~'(sin(a + 2)sina
(16) 28 — 16 + 47 + 4 cos™! (sin(a +5) )

tana

is still larger than the total area-excess 4w — 22A\,. Direct numerical computations show
that @ > 1.04455 and hence

(17) b13 < 1.04455

Improvement on using Hsiang’s method: In fact, from Leech’s proof, the non-existence of a
combinatorial type without 6-fork vertex and with only a single quadrilateral of Figure 1.5(a)
type (resp. Figure 1.6(a) type) correspond to the non-existence of a triangulation only with
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a single 6/\-star (resp. a pair of adjacent 6/\-stars), namely, just by adding a diagonal as
follows:

resp.

Figure 1.7

Therefore, in a triangulated spherical configuration of thirteen vertices, there must be at least
two 6/A\-stars, and in the case of only two 6/A-stars, there are no overlapping triangles between
them. Therefore, the area-excess estimate in Hsiang’s method can easily be improved to be
the double of (16). The corresponding improvement, on upper bound estimate of d;3 is:

(17" 813 < 1.02746

In concluding the above comparison, we find that although the three methods all gave
similar upper bound estimates of d;3, the area estimation method employed by Hsiang how-
ever allows a further improvement when jointly applied with some simple combinatorial
analysis (in fact, the original setup by Hsiang in the lower bound estimates of total buckling
heights also involved some amount of combinatorial analysis). From the above brief discus-
sion, Hsiang’s approach appears to be able to provide a suitable set of tools for the study of
the spherical code problems when combined with some more elaborate combinatorial analysis
on the configurations and some refinements on area estimates.
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